

ИПМаш РАН

РОЛЬ ПОВЕРХНОСТНЫХ СИЛ ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ МАТЕРИАЛОВ С НАНОРАЗМЕРНОЙ СТРУКТУРОЙ

Полянский А.М. ООО "НПК Электронные и Пучковые Технологии", Санкт-Петербург, <u>www.electronbeamtech.com</u> Кудинова Н.Р., Полянский В.А., Яковлев Ю.А. Институт Проблем Машиноведения РАН, Санкт-Петербург, Россия 24-27 мая 2016 г.

Модуль Юнга

Удельные характеристики (приведённые к одному атому) для различных конструкционных материалов.

Материал	W _{лл} ^а , эВ/атом	σ ₀ ^{<i>a</i>} , эВ/атом	W ^a _{кип} , эВ/атом
AI	0,1122	0,3732	3,042
Ті	0,1568	0,6022	4,257
Fe	0,1433	0,6000	3,634

Энергия межатомного взаимодействия

По известной формуле линейного расширения

 $L_x = L_{Ox}(1 + \alpha t)$

можно получить температурную зависимость межатомного расстояния:

 $d_x(t) = d_0(1 + \alpha t)$

α – температурный коэффициент линейного расширения твердого тела,
который измеряется с погрешностью до 0.1% и составляет для большинства
металлов величину порядка 10⁻⁵ 1/К.
Следовательно при нагревании стержня на 100° увеличение среднего расстояния
между атомами кристаллической решетки не превысит 0.1%.
Поэтому потенциальную энергию взаимодействия между атомами можно
с высокой точностью (0.1%) считать симметричной и описать квадратичной
функцией межатомного расстояния

$$\frac{kx^2}{2}$$

$$W_{ce}^{a} = \frac{\varDelta H_{nn} + \varDelta H_{nap}}{N_{A}}$$

W^a_{ce} - энергия связи атомов в кристаллической решетке; *∆H*_{nn} - удельная теплота
плавления (Дж/моль); *∆H*_{nap} - удельная теплота парообразования (Дж/моль), *N*_A - 6,02 × 10²³ 1/моль число Авогадро.

Если предположить, что каждый атом находится в центре куба с ребром *d*, равным среднему расстоянию между атомами в кристаллической решетке, мы получим, что для полного разрыва связей достаточно смещения атома от положения равновесия на расстояние *d*/2.

$$W_{cs}^{a} = \frac{1}{4} E d^{3}$$
 E – модуль Юнга; *d* - период кристаллической решетки.

 $d = n^{-1/3} = \left(\frac{\mu}{\rho N_A}\right)$ *n* – концентрация атомов кристаллической решетки.

$$E = \frac{4\rho}{\mu} \left(\Delta H_{nn} + \Delta H_{nap} \right)$$

Результаты расчётов модуля Юнга для различных материалов

Материал	μ	ρ	ΔH_{nn}	ΔH_{nap}	E _a	Ε _φ	<mark>(</mark> E _φ -E₃)/E _φ		
	(г/моль)	(10 ³ кг/м ³)	(Кдж/моль)	(Кдж/моль)	(ГПа)	(ГПа)	(%)		
Металлы									
Ве	9.0	1.848	13.00	291.0	300.0	249.6	-17		
Mg	24.3	1.738	8.56	128.0	43.0	39.0	-9.3		
AI	27.0	2.689	10.80	293.0	70.0	121.0	+73		
Са	40.1	1.550	8.66	152.0	26.0	24.8	-4.6		
Ti	47.9	4.505	15.10	410.0	110.0	159.9	+45		
Fe	55.8	7.874	13.80	350.0	200.0	205.3	+2.6		
Со	58.9	8.900	16.30	376.0	206.0	237.1	+15		
Ni	58.7	8.910	17.60	370.0	210.0	235.3	+12		
Cu	63.6	8.960	13.00	302.0	120.0	177.5	+48		
Zn	65.4	7.133	7.20	115.3	115.0	53.4	-54		
Мо	95.9	10.220	36.00	582.0	315.0	263.4	+16.4		
Pd	106.4	12.020	17.00	353.0	120.0	167.2	+39		
Ag	107.9	10.500	11.30	251.0	77.0	102.1	+32.5		
Cd	112.4	8.650	6.20	99.6	51.0	32.6	-36		
Sn	118.7	5.850	7.20	296.1	50.0	59.8	+20		
W	183.9	19.350	35.10	770.0	375.0	338.8	-9.6		
диэлектрики									
Н2О лед	18	0,9	6.013	40.683	10.0	8.47	-16.6		
полупроводники									
Ge	72,59	5,323	37,6	334.0	82.0	109.0	+28.3		
Si	28.0855	2.330	49.8	356.0	110-160	134.66	-0.25 (сред.)		
сплавы									
Константан	61.36	8,88	15,07	332,6	165.0	201,3	+19.8		

Оценки энергий деформации стали

Предел текучести

Энергия максимальной упругой деформации **W**₁

$$\sigma_T = 200 - 400 M\Pi a$$

$$0 < \frac{\sigma^2}{2E} \le \frac{\sigma_T^2}{2E} = W_1 = 0, 1 - 0, 2 M \square \mathcal{H} / \mathcal{H} / \mathcal{M}^3$$

Энергия максимальной пластической деформации **W**₂

 $0 < \sigma_T \varepsilon \le \sigma_T \delta = W_2 = 40 M \square \varkappa / m^3$

Теплота плавления W₃

664 *МДжс / м³*

Простейшие модели упаковки зерен

000000000

Объемная плотность поверхностной энергии

Зависимость удельной энергии поверхностного натяжения от размера частиц *σ*=2 Дж/м²

Рис.2. Экспериментальные данные значений σ в зависимости от среднего размера структурных элементов *d* из работы [9] для сталей и аппроксимирующая кривая, полученная из предположения, что $E_S = W_1$.

Зависимость температуры плавления золота от среднего диаметра частиц d.

Точками обозначены экспериментальные данные из работы [8]. Сплошные линии – результаты модельных расчётов по часто применяемым приближенным формулам $T_{\pi\pi} = T_0 \left(1 - \frac{d}{r}\right)$ – кривая (a), $T_{\pi\pi} = T_0 e^{-\frac{2\delta(\infty)}{d}}$, - кривая (b) и по рассматриваемому нами точному решению уравнения Гиббса – Толмена – Кенинга – Бафа

$$T_{\Pi \pi} = \frac{T_0 R}{\delta} e^{(-\sum_{k=1}^3 \frac{x_k^2 \ln(\frac{R}{\delta} - x_k)}{3x_k^2 + 4x_k + 2})}$$

Выводы

В работе проведено сопоставление удельных энергий приходящихся на один структурный элемент твердого тела. Получена и проверена путем сопоставления с экспериментальными данными зависимость, связывающая модуль Юнга с основными физическими характеристиками твердого вещества.

Нам удалось показать, что при построении моделей пластического деформирования мелкодисперсных и наноматериалов необходим учет поверхностной энергии.

Сопоставления с экспериментальными данными позволяют предположить, что именно она определяет механизмы пластического деформирования в этом случае.

Эти механизмы позволяют разработать новые модели пластического деформирования, в которых вклад дислокаций и других дефектов структуры учитывается путём использования удельных характеристик, измеренных экспериментально.

Имеющиеся экспериментальные данные о зависимости мезопроцессов пластического течения от радиуса кривизны наноструктрурных элементов подтверждают эту точку зрения.